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ABSTRACT

A computer program is described which can directly determine
the composition which yields maximum impulse for multicomponent propellant
mixtures.

The method has been coded for IBM 709 and 7090 computers and
has been demonstrated for systems containing up to four components. The
mathematics have been determined so that the technique is applicable to
systems containing up to ten components but, thus far, it has only been
applied to systems containing two to five components.

The computation proceeds directly to the optimum point;
consequently, an economy of machine time over conventional procedures
is realized. The program can be used in conjunction with any accurate
performance computational program.

The final report is made up of two volumes: Volume I describes
the mathematical development and procedures adopted for carrying out the
optimization process and shows computer program flow charts; Volume II
presents the results obtained when the program was applied to some multi-
component systems of current interest and discusses some interesting
aspects of impulse surfaces.
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SECTION 1

INTRODUCTION

A computer program has been developed which can directly deter-
mine rapidly and economically the propellant composition which yields
maximum impulse. The method has been coded for IBM 709 and IBM 7090
computers and has been demonstrated for systems containing up to four
components. The mathematics have been determined so that the technique
is applicable to systems containing up to ten components, but such complex
multicomponent systems have not been tested.

In the past, when binary systems have been considered, the pro-
cedure for finding the composition yielding maximum impulse has consisted
of selecting weight ratios of the two ingredients such that certain major
product species would be formed. Computations of performance were made
of a number of such mixture ratios and a curve drawn through the points
to determine the maximum. Usually, five or more such computations, depend-
ing upon the accuracy desired, yielded the composition of maximum impulse.
If really exact determmination of the theoretical maximum was desired, more
calculations were needed, particularly if the performance curve was irreg-
ular,

For three-component systems, the most convenient and reliable
representation is the use of triangular diagrams. As an alternative to
triangular plots, Cartesian coordinates can also be used, but these can
lead to errors and omissions and are not as clear cut. Using the tri-
angular plot technique, a number of compositions are again arbitrarily
chosen and plotted. When sufficient numbers of impulse values are de-
termined, at least 12 in the best possible cases and usually many more
for the average system, constant impulse contour lines are estimated and
drawn in the plot. Again the accuracy of the final result is a function
of the number of computations made. A great many more points are usually
required for ternary systems than for binary systems, inasmuch as it is

-1-
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difficult to guess where the optimum-performing composition will be. For
four or more component systems, the number of calculations required be-
comes inordinately large, and representation of the results and attain-
ment of the true maximum becomes increasingly difficult.

The computer program described in this report minimizes the
number of performance calculations required to determine the composition
of maximum impulse. Valuable computer time is saved by using the pre-
viously calculated composition, or some close approximation to it, as a
starting composition in each step of the optimization process. In addi-
tion to economizing machine time and directly determining the optimum
composition, the program has been set up to allow restriction of the in-
gredients to certain ranges of values or ratios, as desired. Thus, for
a solid propellant system where the presence of some minimum amount of
binder is necessary, even though it degrades impulse, the binder content
is not allowed to drop below a certain prespecified value. Similarly,
the ratio of oxidizer to fuel can be maintained while the binder content
can be varied, etc. These additions to the program take into account
practical considerations which cannot be ignored even in theoretical work.

The mathematical details and the programing of the optimization
procedure are described in Sections 2 through 7 of Volume I. Some addi-
tional programing to improve the efficiency of the program is suggested
in Section 8 of Volume I. Volume II presents the results obtained when
the program was applied to some multicomponent systems of current
interest.
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SECTION 2

MATHEMATICAL APPROACH TO THE PROBLEM

2.1 GENERAL CONSIDERATIONS

Due to the complexity of the relation between the reactants in-
volved in a rocket motor performance calculation and the specific impulse
produced by the combustion of these reactants, it was felt that the only
fruitful approach to the optimization of specific impulse would be one of
numerical nature. In the course of developing the current optimization
program, two such approaches were attempted. These were:

(1) approximation of the impulse surface by a second
order surface, and

(2) a gradient approach.

In each of these methods an initial composition of reactants is
chosen, and by considering certain properties of the specific impuise
function in the neighborhood of this initial point, a new point is deter-
mined. Hopefully, the specific impulse at this new point will be greater
than that at the old. Let us denote the old and new points by y and z.
rcspectively, and the specific impulse at some arbitrary pcint x by I(x).
Further, we will assume that if y is not the point with maximum impulse,
then the application of our process to y will produce a z such that
I(z) > I(y). Clearly, by using z as a new y the process can be repeated
with perhaps a further increase in I(z). This iteration can be continued
until no further improvement is possible. !

Note that this procedure embodies the assumption that there is
only one relative maximum of I(x) in the domain of x where x 15 a closed
set. For functions I(x) that do not satisfy this condition the procedure
will determine some point, say x*, at which a relative maximum of I(x)
occurs; however, [(x*) will not necessarily be the absolute maximum of T{x).




PR

~

AERONUTRONIC

AERONUTRO N € s S

G ‘ .
A ovision ofF Jord Kot Gompa "y,

2.2 SELECTION OF INDEPENDENT VARIABLES

The point x must represent the reactants involved in a par-
ticular specific impulse calculation. For instance, the ith coordinate
of x (i.e., x{) could be the mass, or perhaps the number of moles of the
ith reactant. With either of these definitions of x, however, we would
have that I(x) = I(kx) where k is any positive constant. This follows,
since I(x) is a specific quantity, i.e., independent of total amount, and
x and kx represent mixtures of reactants of the same relative amounts.
This situation, that is,where an infinity of points represents a single
composition, has obvious computational disadvantages. The basic problem
is, that for mixtures of n reactants, specific impulse is a function of
only n-1 independent variables. For instance, we could choose the ratios
of the amounts of the first n-l reactants to that of the last one as the
n-1 coordinates of x. Another possibility would be to represent the
amounts of each of the n reactants as a coordinate of x but require that

n
the total amount, that is Zzixi,be constant. If this constant is one,
i=1

then the Xy become mass or mole fractions,
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SECTION 3

OPTIMIZATION USING A QUADRATIC APPROXIMATION

The initial approach to the optimization problem used a
quadratic approximation to I(x) at y. This attempt was not success-
ful, and therefore will be treated only briefly,

th

Let xj represent the mass fraction of the i reactant in the

‘mixture. The quadratic approximation to I(x) given as a truncated Taylor

Series about the point y is

T 21 v ﬁi 2%
Q(x) = I(y)+2__§x— A+ 2 Sx ox. A, AJ. (1)
i=1 771 | x=y i=1l j=1 ¢7i<7j | x=y
where Ai =Xy,
Since the X, are mass fractions, we have
>
x,.=1 (2)
i=1 '

We will take the new point z to be that point which causes Q(x) to be an
extremum subject to the constraint given by equation (2). Applying the
Lagrange Multiplier technique, we are led to the following equations:

1+"_92_I_

i= axlaxJ Al = d X j=1,2,...n (3

x=y J ix=y

where Ais a Lagrange Multiplier. Equation (2) must be satisfied for both
the old and new points, It follows that

-5
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i

i=

The partial derivatives in equations (3) must, of course, be
evaluated numerically. Equations (3) and (4) are a set of ntl linear
equations in the unknowns A and the Ai' The solution to this system
gives corrections which, when applied to the point y, give the new
point z. Thus

z, =y + Ai i=1,2,...n (5)

The algorithm just described makes the tacit assumption that
I(x) can be represented reasonably well by a second order surface in
n dimensional space. For many systems, however, this is not the case.
This can readily be surmised from an examination of the projection of the
impulse surface in various planes. This is discussed in more detail in
the section titled '"Characteristics of Some Impulse Surfaces'.

Due to the poor approximation obtained by using second order
surfaces, the relation I(z) >I(y) would not in general hold. Therefore,
this approacn to the problem was abandoned.
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SECTION 4

OPTIMIZATION USING THE GRADIENT APPROACH

The method that was actually used in the computer program is

i a modification of one described by Curry . Other modifications of this

o procedure have been proposed in the literature. Box's method” seems to
be an excellent one; however, it is not easily mechanized for machine

N computatign., The method used by Booth for the solution of linear

equations™ is clearly not adequate for the optimization of systems

whose specific impulse function is extremely rugged. The method des-
cribed herein is easily mechanized and seems to be sufficiently power-
ful to handle up to four component systems with no difficulty. The
following discussion includes the option of imposing linear constraints
on the reactants, although this option has not been included in the com-
puter program, With the imposition of m linear constraints, the pro-
cedure should easily handle systems of 4+m components.

J(b-—_.‘

Let x; be the mass fraction of ith reactant of the system*,

As before, we have the restriction that

n
Z x.=1 (6)

l ——i

 e— ).—d
=

=] "
P

E aikxi=bk k=1,2,...m 7

*An optimization program was also written using mass fraction ratios as
the components of x. This procedure was somewhat inferior to the method
that was adopted for the existing program.

-7-
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Note that equation (6) is of the same form as equation (7). We shall
include them altogether by writing

ikxi=bk k=0,1,2,...m (8)

ﬁj»ﬁ:
o]

where b0 and all the aiO have the value 1.

Let us solve equation (8) for xi,inl,Z...m+l in terms of the
remaining X, Thus

- S

n
a a . . . a X bo- > a,.x, !
10 20 w1,0 1 e} i0 1;
gy | b2
a a . . . a f pd b. - a,.x,
11 21 m+1,1§ ; 2 - 1 i il71 9)
l .
|
| &
‘ bt -
,alm %m oot am+1,m SR bm e &imty
L o L1 =mt2 |

Let A be the determinant of coefficients in equation (9) and let A, be A
with its ith column replaced by the column vector on the right sidé of (9).
Then, by Cramer's Rule
Ai
X = A i=1,2,...m1 (10)

where A is a non-zero constant and the Aj are functions of Xio i=n2,m:3,..n
only. (The requirement that A#0 is equivalent to requiring the constraints

given by equation (8) to be independent.) It follows that specific impulse,
Isp, is a function of only n-m-1 of the reactants; that is

sp - m+2)xm+3)--'xn) (ll)

We will denote the quantity n-m-1 as the number of degrees of freedom of
the system.

In addition to the constraints given by equation (8), we must re-
quire that the mass fraction, x;, of each reactant be non-necgative. Tt is
no more difficult to require that x; be not less than an arbitrary positive
constant, e;, consistent with equation (8). For the sake of generality,
we shall follow this course. Thus, for the n-m-1 independent variables,
we have

-3-
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x, > e, i=m+2 ,m+3...n (12)

and for the remaining variables from equation (10)

Ai_>_Aei i=1,2,...m1 (13)

We summarize the results thus far obtained as follows: We wish
to find the numbers x;, i=m+2,m+3,...n subject to the inequalities (12)
and (13) that will cause I  , given by the expression (11), to assume a
maximum value. (Note that once the xi for i=m+2,mt3,...n are fixed, the

remaining x, can be obtained from equation (9).

The procedure at this point as described in Reference 1 would
be to start at some point y=(ym+2,ym+3,...yn) and proceed in the direction
of steepest ascent, 1i.e., in the direction of grad I, , to a point z such
that I(z)> I(x) for all points x on the line through y with direction
grad I, . At this time, the point z would be treated as new y and the
process repeated until convergence was attained. Such a process is illus-
trated in Figure 1 for a system with two degrees of freedom. The dotted
line composed of straight segments represents the path taken by the iter-
ation. The curved lines represent level curves of I, . It is easily
shown that any two adjacent segments of the path are such that the first
is tangent to a level curve of Igp at the point of intersection of the two
segments while the second is normal to the same curve at the same point.

Figure 1 illustrates a surface whose maximum value is easily
found by applying the algorithm just described. Unfortunately, the sit-
uation is not always this simple; for example, an examination of Figure 2
would indicate that very many steps would be necessary in order to locate
the peak for that system. It would seem then that we should not be re-
stricted to travel only in the direction of grad Isp

Consider a typical step in an optimization path for a system

with two degrees of freedom, as shown in Figure 3. The points y' and y
represent the previous and current reactant compositions, respectively.
V' is a unit vector in the direction of the step from y' to y, and U is

a unit vector in the direction of grad I, , at y. By hypothesis, there is
one and only one relative maximum of Iz, in dom x; suppose it occurs at
x*. Denote the unit vector in the direction from y to x* by V. It is
clear that if Isp is continuous in dom x*, then U*V>»0; that is, U and V

*dom x indicates the region in which x is defined.

-9-
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-

—— X
n-1

S8486

- FIGURE 1. APPLICATION OF THE GRADIENT TECHNIQUE TO A

SIMPLE SYSTEM WITH TWO DEGREES OF FREEDOM

STARTING POINT
e X ‘
n
L x
= Xh-1

- S8487

FI URE 2. APPLICATION OF THE GRADIENT TECHNIQUE TO A LESS REGULAR
SYSTEM THAN THAT SHOWN IN FIGURE 1.
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FIGURE 3. MODIFICATION OF THE GRADIENT TECHNIQUE

USING THE "T PROCEDURE"
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will both lie on the same side of V'. It follows that we can represent

V in the form
Vv = Vl—t2 U+tv! -1<t<1 (14)

For systems with more than two degrees of freedom, the point x¥* will in
general not be the optimum point for the system, but will be the optimum
point in the plane defined by U and V',

Suppose we allow the variable t in equation (14) to take on any
value between -1 and 1. Then any point x, in the half plane om the side
of V' toward U, is given by

x =y AV = y4A [_Vl-t:z U+tV'] (15)

where :\is the distance of x from y and U has components

91/9 %,

Y T 25 %
F (3
j=mt Iy :

Since U, V' and y are fixed at any point in the iteration, x is a function
of only } and t. We emphasize this relation by rewriting equation (11)
as follows:

i=m+2,m+3,...n (16)

I, = 1A (7)

For a specified value of t, Iy, is a function of Aonly. Denote this function
as It()). Let X* be the valué of A that maximizes I.( A). Clearly, A%
will depend on t. Let us restrict the Ain equation (E7) to take omn only the
values A¥. Then

= T( A% = I%*
I, = LA%(6),0) = I*(0) (18)
that is, we can consider Ig, as a function of t only. The point at which
I*(t) is a maximum is clearly x*.

The functions I¢(A) and I*(t) can be maximized by successive
polynomial approximations. This is further discussed in the following
section.

The domain of x, (i.e., the points representing acceptable re-
actant compositions) is defined by the inequalities (12) and (13). Consider

-12-
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the equations formed from (12) and (13) by replacing the inequalities
by equalities. Thus,

X, = e, i=m+2,m3,...0n (19)
i i

Ai = Aei i=1,2,...mtl (20)

Equations (19) and (20) represent planes in the n-m-1 dimen-
sional x space, Dom x is the region contained within all the planes; that
is, if y is some point in dom x, then any other point x in dom x can be
joined to y by a line segment that does not cross any of the planes given
by equations (19) and (20).

The above considerations make it clear that Ain equation (15)
may be limited to certain values, say 0& A< A,y where A .. is the
value that would cause x to lie on the closest plane, given by equations
(19) and (20), in the direction of V. Let us denote the components of V
by vi,i=m+2,m+3,...n. A line through y in the direction of V is given by

X."y.
— = A i=mt2,mt3,...n (21)
i
Now;\ is the distance between x and fv‘l Denote the distance, along the

direction of V, between y and the jt limiting plane given by equations
(19) or (20) as Xj- Then, from equation (19)

A = 43 j=mt2 ,m+3,...n (22)

In order to find Aj’ for the remaining j, substitute x, given
by equation (21) into equation (28). Thus, for j=1,2,...mtl B

a9 3o * o+ bo - i%zaio(y{& ;(J.vi) ... am+1,0

n
a a . . . b, - Z a, (y.+ l.v.) .. . a

1 17, & % Ay m1,1
A=1. . . . =Aej (23)

n

Um Pom v Pm T ig-*zaim(yij"i) o fl,m

«13-
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where the distinct column is column j. Define

n
a0 %0 * - P - (L ®i0%1 4nt1,0
n
%21 P 2ot
Bo=| . . . . (24)
n
m *m bm B ié%Iéalmyl am+1,m
and
n
%10 %20 i%alo"x %m41,0
I ig;—zau"i ¥mr1,1 (25)
c,=
#1m m EE; a, v, . . . a
S im i ml,m

where the distinct column is column j. Then equation (23) can be written

B, - .C .=Ae
J ;M J J
so that
B, -Ae,
1

>‘j = cj 3=1,2,...m1 (26)

Equations (22) and (26) give expressions for the distance, along
the direction of V, between y and the jth limiting plane. The situation
is illustrated in Figure 4. Here we have taken n=4 and m=1, Dom x is the

closed finite region bounded by the lines Al=Aeq,Aj=Ae),xq=eq and x,=e,.

In this case V points toward the former two lines and away from the latter
two. Thus here A, \oD?0 and A3, A,< 0. It is clear that A, is the largest
step that can be taken, in the direction of V, starting from y, if the point
x is to remain in dom x. In general, the largest step is given by

-14-
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LIMITING PLANE RESTRICTIONS ON MAXIMUM STEP SIZE IN DOM X
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xmax = min pos Xj j=1,2,...n 27
where min pos stands for 'the minimum positive value of" and

B, -Ae
¥, = 11 §=1,2,...m+1

v j=m+2 ,m+3. . .0

-16-
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SECTION 5

OPTIMIZATION ON A LINE

The discussion thus far has provided the basis for choosing
a region R, that is a finite portion of some half plane in x-space,
in which an improved composition is to be sought. The actual seeking
out of this improved point is done by maximizing Iy, in R. In order to
accomplish this, it is necessary to be able to locate the optimum point
along some line L in R. The development of an algorithm that will
efficiently locate the optimum point on L necessitates the assumption
that one and only one relative maximum of Ig, exists on L. This assump-
tion does not follow from our original hypotgesis; i.e., that one and
only one relative maximum of I exists in dom x, and, in fact, is not
generally valid. For example, see Figure 5. Here, there is a unique
maximum in dom x; however, if we restrict x to points on L, then the
resulting function has two relative maxima*. None of the cases that
have thus far been run on the computer have been affected by the in-
validity of this assumption. Since the assumption enables a powerful
tool to be utilized in the optimization process, it will be made; how-
ever, it must be kept in mind that this procedure could provide a possible
source of difficulty in the optimization of a given system. As will be
noted below, this assumption can, in effect, be removed from the optimi-
zation process by the suitable choice of a program constant. This, of
course, should not be done unless trouble arises in using the recommended
procedure.

*The difficulty arises in the maximization of the function I*(t) given in
equation (18). The numerical procedure used in computing I*(t) is such
that it is possible for either of the maxima indicated in Figure 5 to be
specified as the optimum point on L. The resulting function I*(t) could
therefore be discontinuous.
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Consider the function defined by equation (17) for a spec-
ified value of t. The region of definition for this function is L,
- the line segment composed of the points x given by equation (15) for
0 < ALAax Where A max 1§ 8iven by equation (27). We have already
l referred to this function as It(7\). It will be assumed that one and
only one relative maximum of I ( A) exists. Under this assumption,
there are three possible situations:

S

(a) It(O) is the relative maximum,
() It(/\111ax) is the relative maximum, or

(c) a relative maximum exists for 0< k<kma*<'

The process of locating the optimum A offers no problems in the first
two cases. Accordingly, we will examine the third case.

=

;‘ Consider a graphical representation of It(x) in which the

wm ordinate and abscissa of a point P; represents It(;{i) and;{i, respect-
ively. Clearly, we can determine three values of A, say A,< A2< A3,

T such that I (Rz) Z It(xi), i=1,3. Through the corresponding points

! Py, Py and 1§3, let us construct a parabola, and then determine the value

of A corresponding to the vertex of the parabola, say A.. Next, we can

. compute I .( A )and thereby obtain Pp=( Ay I (A )). From the four points

l Py, Py, Py and P,, we can choose that wigh the Iiargest ordinate. (This,

» of course, will ge either Py or P,.) Using this as a new P,, together
with the adjacent points on either side of it as new P, and P4, we ob-

) tain a new set of three points, and the process can be repeated. This

,I,, is illustrated in Figure 6. Here, the next set Py, Py, Py would be the

old points P, Pp, Py,

l The program actually employs a process that is a slight mod-
i ification of the procedure just described. The trouble with the above
procedure is that it can be rather slow in converging. For example,
consider Figure 7. The initial three points are A, B and C. In this
+h case the curve is such that a poor approximation to the optimum Ais
obtained at each step. The process yields, successively, the points

D, E, F, G and H, and, in turn, discards, successively, the points

B, C, D, E and F. Here, of course, the troublesome point is A, and its
retention prevents good approximation to the optimum

In order to alleviate this difficulty, the current procedure
sometimes determines, in addition to Pp, the point P =( Rm,I(Xm)) where
Xm=1§(;\1+ A3). This is done only if A is considerably different than
both A, and Xp' The criterion being used is that if both

-19-
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An~ A
Rm 22 >0 2 and ———P->0 2 then P is determined. The actual process

A AL T A3” AL~

is as follows:

1. Start with a set of points (Pl’ P2, P3).

2. Compute A andxp

- A
3. If ﬁ‘_—/{(o.z, go to 8.
A3™ Ay

An~ A
4. 1f =2 22L0.2, go to 8.

A3~ A
5. Otherwise, compute It(;\m), thereby obtaining P _

6. Get new set (Pl’PZ’P3) from old points (P 2 3, )

as described above.
7. Compute ;kp from new set.
8. Compute It(zp) thereby obtaining Pp.
9. Get new set (Pl’PZ’P3) from old points (Pl’PZ’PB’Pp)
as described above.

10. Go to 2.

Whenever a new set of points is obtained, they are tested in order to
determine if convergence has been achieved and therefore if the iteration
should be terminated.

The foregoing discussion gives the method used in evaluating
I*(t) defined in equation (18). Once t is specified, the optimum A ,
i.e., A*(t), can be determined by the above procedure. Thus I*(t) is
obtained. In finding the value of t that will maximize I*(t), a similar
procedure is used. In this case the ten steps outlined above are repeated

except that all It(?\) are replaced with I*(t) and all A are replaced with t.

-21-
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The determination of the maximum value of I*(t) is a rather
lengthy process when compared to the computation involved in the max~-
imization of It(;\). In order to avoid unnecessary computation and
still retain the use of the I*(t) maximization when applicable, the
following procedure is effected.

(a) Grad Ig, is determined, and Io(;\) is maximized.
This computation provides XA *(0) as defined in
conjunction with equation (18).

(b) If;\*(O):’eA where e5 1is a program constant
(presently, we are using 0.02), then go to (a).

(c) Otherwise maximize I*(t).

(d) Go to (a).
Note that if e- is taken to be zero, then the maximization of I¥*(t)
is completely bypassed, and the process reduces to the usual gradient
method as described by Curry, in Reference 1. 1In any case, where the

assumption of a unique maximum of Is on a line causes computational
difficulties, this procedure can be Pfollowed.

-22-
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SECTION 6

DETERMINATION OF THE GRADIENT

Let P = (xm+2,xm+3’...xn) be an arbitrary point in the n-m-1

dimensional x-space. The impulse function, I , can be considered as a

Y ce
. . . : m+2, m+3 Yn)
is some specified point in the x-space, then the tangient hyperplane

to the impulse surface at PO is given by

surface, I(P), in the n-m dimensional space. f P0 = (Y

n

I(®) - I(® ) - Z g% X - Yi) =0 (28)

i=m+2 * |p
[o]

The derivatives in equation (28) are the components of grad Isp at PO.
Since they are not directly obtainable we must use equation (28) in
order to evaluate them numerically. Thus we can choose points P,, j =
m2, m3,...n in the neighborhood of PO and, after evaluating the I(Pj),

>
equation (28) yields n-m-1 linear equations in the unknowns ol

. Thus
1)

0
. ]
I(Pj) - I(Po) - 2: 4?%— (Xi - Yi) ~ 0 j=m2,...n (29)
i=m+2 O71
P
o
where XJ is the ith coordinate of P,. The solution to equations (29)

i
affords an approximation to grad ISp at PO.
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A simpler procedure would be to choose the P, such that only
the jt coordinate of P, differs from that of Po' In that case the system
of equations (29) would reduce to

h

I(Pi) - IR )

X, - Y,
i i

I ~
Sx| F

i =m2,m 3,...n (30)

P
o

If there is some a priori knowledge of the nature of the impulse function

it may be feasible to choose the P; in guch a way as to minimize the error
inherent in the approximate equations (29). However, in general we do

not have such knowledge. Therefore, we shall prefer the simpler equation (30).

Let us define the point APi as follows

APi = (0,0,0,...AXi,0,0,...0) (31)

where AX:= Xi - Y; is the ith coordinate of the right side of equation (31).
Then equation (30) becomes

I(P + AP.) - I(P))
aI e ¢} 1 Q .
o2 i =m2,...n (32)
axi AX;

P
o

Equations (32) are linear approximations to the derivatives at P,.

It has been found that by improving the accuracy of the derivatives
at each step the iteration to optimum IS is accelerated. A more accurate
set of derivatives can usually be obtainbd if, instead of using equations
(32), a quadratic approximation is applied. If the points chosen for the

, <3 o -3 - A R
quadratic approximation to 3X. are Po ZlPi, PO, PO + Pi then the
i
P
o

approximating form is
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( AP,) - I(P - AP,)
o1 ~ I(Po + i o] i
~ i =m2,m3,...n (33)
BXi > 2 AXi

(o}

I1f equations (33) are used instead of equations (31), an additional impulse
must be obtained for each i. The additional computation time, however, is
small sinceAXi is chosen to be a small number® and so a good guess for the

composition at Po - APi is available. (The guess, of course, is the com-
position at Po.) The program accordingly uses equations (32) to obtain

the gradient.

* Currently we are usingAXi = max (0.0015625 Xi, 0.000625)
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SECTION 7

PERFORMANCE PROGRAM REQUIREMENTS

The derivatives 3 specified in equation (16) must be com-

i
puted numerically. In order to determine these fairly accurately, rather
small increments in x; must be utilized. This is especially true for
systems with narrow ridges in the neighborhood of such ridges and for any
system in the vicinity of its peak. This requirement of small xi incre-

ments necessitates a very precise specific impulse calculation,

Another facet of the optimization procedure that requires a
precise evaluation of Iy, is the one dimensional maximization of lt()s)
and also that of I*(t). In the vicinity of a one dimensional relative
maximum it is likely that the approximating curve will be computed from
points at close proximity. Thus a small deviation in the vatue of Ig
at a point might radically change the nature of the approximating curve.

In computing numerical derivatives the computer program uses
increments in xy of between 0.000625 and 0.0015. The preogram determines
I*(t), i.e., the maximum value of It(;\)’ to an accuracy of 0.001 in A
and 0.001 in I ,. These factors make it imperative that the performance
program be precise (i.e., continucus) to within 0.0005 seconds in [sp

The convergence criteria mentioned above could, of course, be
somewhat relaxed. It has been noted, however, that in the rather prevalent
case of a surface containing a narrow ridge, the determination of the peak
impulse is accelerated by requiring rather precise convergence to be at-
tained at intermediate points in the iteraticn., This is further discussed
in the next section.
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SECTION 8

SUGGESTED ADDITIONAL WORK

efficient, the following tasks should be undertaken:

(1)

(2)

(3)

(4)

The option to impose linear constraints on

the system should be programmed. The math-
ematical formulation of the inclusion of such
constraints has been carried out as previously
indicated.

An improved method for finding the peak im-
pulse along a line in mass fraction space
should be sought, It would seem that a com-
bination of cubic and parabolic approximations
to the peak impulse would be preferable to the
parabolic and mid-point approximation pre-
sently being used.

If it is desired to optimize systems with four
or more degrees of freedom, some consideration
should be given to a generalization of the "t"
iteration to higher dimensions.

Special tests for convergence should be devised.

In establishing convergence to the optimum pro-

pellant composition the current computer programs

sometimes take an undue amount of time.
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SECTION 9
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APPENDIX D

SUBROUTINE FOR COMPUTING OPTIMUM VALUE OF A FUNCTION OF ONE VARIABLE

—

The following symbols are used in extrme charts 1.through 4:

13
»

XR - index register

FUNCT - The address of the starting location of the subroutine
that computes the function to be extremized. NOTE: This
subroutine must preserve index Register 1.

N - The maximum number of times that the function is to be computed.
L TABLE - A block of storage in which all pertinent quantities are saved
in the extremization process.
I T - The level of the extremization (the optimization of T ( X ) is
) the 0-th level and the optimization of I*(t) is the lst level.)
] X - The starting location of a block of three words in which the
] abscissas of the bracketing points are to be found.
’I Y - Same as X except the ordinates are stored here.
- ERRX - Address of cell containing tolerance for the abscissa
' ERRY - Address of cell containing tolerance for the ordinate
P(x,y) - The point P having abscissa and ordinate x and y
l< m(subscript) - "At midpoint"
l p(subscript) - "At parabolic approximation"

1, 2, and 3 (subscripts) - Leftmost, middle and rightmost points in
the set of three bracketing points
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APPENDIX D (Continued)
EXTRME CHART 1

[S———

SAVE XR'S 28 4 |IN COMPUTE Xm
] TEMPORARY LOCATIONS.
TURN OFF OVER FLOW
{ LIGHT. COMPUTE

XPo

|

I PICK UP 4th WORD IN
CALLING SEQ. FUNCT—»
XR2. STORE N IN
TEMPORARY LOCATION

COMPUTE POSITION IN ‘____@
Xm TO

TABLE OF FIRST LOCATION
' IN BLOCK OF CELLS ACCUMULATOR
' UTILIZED FOR THE Tth
OPTIMIZATION LEVEL. THIS
QXURANTITY GOES INTO

|

STORE THE FOLLOWING
IN THE APPROPRIATE
CELL OF Tth BLOCK:
|:2~rr:‘A FUNCT INSTRUCTION
3. XR'S 2 & 4
T COMPUTE
xP

IS EITHER Xpm

OR Xp CLOSE
TO X3

COMPUTE
ORDINATE

PICK UP 2nd WORD
OF CALLING SEQUENCE

PZE X,0, Y Xp TO
l ACCUMULATOR

STORE COORDINATES OF
THE THREE POINTS
BRACKETING EXTREME
VALUE IN APPROPRIATE
- CELLS OF Tth BLOCK

ARE THE THREE

THEY BRACKET
THE EXTREME

RESTORE

h PICK UP 3rd WORD OF (:H‘xn's 284
CALLING SEQUENCE
PZE ERRX,0,ERRY 8 _,El’t(l'c:)n
STORE TOLERANCES IN
h APPROPRIATE CELLS OF
Tih BLOCK PUT X AND Y
COORDS OF EXTREME
B POINT IN MQ 8
ACCUMULATOR
NO
-
EXIT
A
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APPENDIX D (Continued)
EXTRME CHART 2
(@ COMPUTE Xp

Xp - %
WHERE

A=Y, (Xz- X3) + Y (X3 - X|) + Y3 (X| - Xg)

Bev (OG- x8) +ve (G- ) +vs (X-)

COMPUTE
X 1/2(%, + Xg)

®
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APPENDIX D (Continued)
EXTRME CHART 3

-

-

@ COMPUTE ORDINATE

HAS Y BEEN
COMPUTED
N TIMES

ERROR EXIT

SAVE XR2 IN
Tth BLOCK FOR

RETURN

1S X A
PARABOLIC
APPROXIMATION

POINT AS

STORE MIDDLE

EXTREME POINT

L

X TO ACCUMULATOR
AND TRANSFER TO
TRANSFER INSTRUCTION
"IN Tth BLOCK

SUBROUTWE
3
X TO ACCUMULATO TURN OFF
AND TRANSFER TO OVERFLOW LIGHT
TRANSFER AND STORE Y
INSTRUCTION IN
Tth BLOCK
o | )|
TO _FUNCY
SUBROUTINE RESTORE
p! XR 2
Y
STORE
" 6
EXIT
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APPENDIX D (Continued)
EXTRME CHART 4

® GET NEW SET OF POINTS

YES

IS Y MORE
EXTREME THAN

BOTH Y, B Y3?

IS Y MORE
EXTREME
THAN Y,

A DIVISION OF yx(yj(o(or((fmn/?a ny,

YES NO
S s X> X, M s X2 X
oLo Py oLo P, P P
BECOMES BECOMES BECOMES BECOMES
NEW P, NEW P3 NEW P, NEW Pg3
P BECOMES
NEW P,
ARE TWO OF
p—>>EXIT

ARE ALL THRE

OF THE Y

COORDINATES
WITHIN THE Y
TOLERANCE

ADJUST COUNT SO
THAT  ORDINATE

SUBROUTINE WILL
NOT GO TO

WAS MIDDLE
POINT THE LAST
ONE COMPUTED

RECOMPUTE

MIDDLE
POINT
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APPENDIX E (Continued)
ADDITIONAL SUBROUTINES
{CHART 2)

MULTIPLY ith COMPONENT OF VECTOR
BY DISTANCE FROM PREVIOUS POINT,
SAVE SMALLEST OF i CHANGES

MULTIPLY ith COMPONENT OF
VECTOR BY DISTANCE FROM BASE
POINT ADD TO MASS FRACTION OF
BASE POINT TO OBTAIN NEW
MASS FRACTION ( CURRENT)

]-

HAS
i th COMPONENT

BECOME ZERO
OR NEGATIVE

YES

SET THE DISTANCE ALONG THE VECTOR
TO THE DISTANCE FROM BASE POINT
TO EDGE AND THE CHANGE IN DISTANCE
TO THE DIFFERENCE BETWEEN THE

NO
EDGE AND THE PREVIOUS POINT

CHANGE INDEX
REISTERS YES

GO BACK TO BEGINNING
EVALOX

EXIT
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APPENDIX F

OPERATING INSTRUCTIONS FOR USE OF OPTIMIZATION SUBROUTINE

The propellant optimization routine is an open subroutine.
Several parameters and a function subroutine must be supplied by the
user, The parameters and their symbolic names are:

(1) The number of propellant ingredients; KPROP

(2) The mass fractions (or weight percents) of the
ingredients, their chemical formula and heat of
formation at 298°K; block starting at PROPMF
(up to 10 cells)

(3) The gaseous product species mass fractions; block
starting at XG (up to 100 cells)

(4) The condensed product species mass fractions; block
starting at XC (up to 20 cells)

The function subroutine to be supplied is assumed to have the
symbolic entry IMPULS (index register 4 is set upon entry) and should
return to the optimization routine by TRA 1, 4 with the function value
in the accumulator.

The specification of the reactant mass fractions allows the
user to specify the point on the impulse surface from which the opti-
mization routine begins. The product species mass fractions are used to
permit the optimization routine to provide the IMPULS subroutine with
good estimates in order to minimize the computation time required to
calculate specific impulse. The use of the latter capability is not
required.

With the completion of initialization, control is transferred
to the optimization routine with TSX OPTMUM, 4. Specific impulse is
calculated for the original fuel composition and that is regarded as the
first base point. The derivatives of impulse with respect to changes in
fuel composition are determined numerically. 2n-2 impulse zalculations
(n = the number of reactant species) arerequired for derivative calculations
at a base point. These derivatives are used to define the line along which a
maximum impulse is sought. If the '"t" iteration is used (only after at least
two base points are established) the line is defined as a linear combination of
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the lines established by the numerical derivatives at two successive
base points. After the maximum impulse along the line (or among the
maxima of several lines if the t iteration is used) is found, the point
at which it occurs is used as the next base point and the computation
proceeds from there as it did from the previous base point. Conver-
gence is identified in one of two ways:

(1) The impulse values at three successive base points
are within an interval of one second.

(2) The use of the "t" iteration offers no improvement
to the value of specific impulse at the current
base point.

If in the search for maximum specific impulse a reactant species
concentration tends to zero, an attempt is made to allow the iteration to
proceed with only a small amount of that species present. If the attempted
elimination of the species is persistent the computation is terminated

After convergence or termination of the optimization,control
is transferred to the instruction following the transfer to the optimiza-
tion subroutine,




